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The sufficient conditions for asymptotic stability and instability of the relative equilibrium position of a mechanical system with 
holonomic-rheonomic constraints are derived. On the basis of this, new methods of solving the problem of stabilizing the 
programmed motions of the controlled mechanical systems are proposed. The problem of the stability of the equilibrium position 
and the programmed motion of a physical pendulum, the horizontal swinging axis of which rotates was a variable angular velocity 
around a vertical axis, is solved. The problem of controlling the relative motions of a centrifuge-type system by a regulated velocity 
of rotation of the base is investigated. © 2004 Elsevier Ltd. All rights reserved. 

1. T H E  S T A B I L I T Y  O F  T H E  R E L A T I V E  E Q U I L I B R I U M  P O S I T I O N  O F  
A M E C H A N I C A L  S Y S T E M  W I T H  H O L O N O M I C - R H E O N O M I C  

C O N S T R A I N T S  

Consider a mechanical system with holonomic-rheonomic ideal constraints, the position of which is 
defined by n generalized coordinates q' = (ql, q2, ..- , qn),  and the kinetic energy of the system is 
represented in the form 

T = T 2 + T I + T  o 

t 

T 2 ( t , q , q )  = ~qA(t,q)q, T l ( t , q , q  ) = B ' ( t , q ) q  

whereA(t, q) is a positive-definite n x n matrix, B(t, q) is and n x 1 column matrix and T0(t, q) is a scalar 
function; the prime denotes transposition. 

The motion of the system under potential forces with a potential energy Fl(t, q) and other generalized 
forces Q = Q(t, q, il) can be described by Lagrange's equations, reduced to the form 

dt~, bq ) -  ~ - bq ~ + Q (1.1) 

The matrix G is defined by the equality 

on -o' a(t, q) = ~-~ -~,~--~) = 

and can be regarded as the matrix of linear gyroscopic forces, and W(t, q) = Fl(t, q) - T0(t, q) can be 
defined as the reduced potential energy. 

We will assume that, for a certain value of q = q0, for all t e R + we have the equality 

bW bB 
Q(t, qo, 0) - -~-ff (t, qo) - ~ - ( t ,  qo) - 0  (1.2) 
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System (1.1) then has the relative equilibrium position 

q(t) = 0, q(t) = q0 (1.3) 

We will consider the problem of its stability, assuming that the elements of the matrices A (t, q) and 
B(t, q) and the function W(t, q) are defined and twice continuously differentiable in the region R ÷ x F1, 
and the vector function Q(t, q,/1) is defined and continuously differentiable in the region R ÷ x F 1 x F2, 
where all the functions indicated are uniformly bounded together with their derivatives for bounded 
Ilqll and 11411 for all t s  R ÷. Here 

F i = {q~  Rn'llql[<Hi, O<Hi<+oo}, i = 1,2 

and I I q ll is the Euclidean norm of the vector q s R n, I I q ll 2 = q~ + . . .  + q2. 
It follows from these conditions, imposed on the functions in Eqs (1.1), that Eqs (1.1) are precompact 

[1, 2], and limit equations are defined for these which have a form similar to Eqs (1.1), 

 _(arT3 ar7 a w ,  a s ,  + Q ,  (1.4) 
dt\ 0(1 ) Oq - Oq G*(t---~- 

The asterisks denote functions, matrices and expressions, which are limit functions, matrices and 
expressions for the corresponding functions, matrices and expressions of Eqs (1.1) and are defined by 
the following equations (the limit is taken as tn ---> +~,) 

T~(t, q, (1) = ~q A (t, q)t], A*(t, q) = limA(t n + t, q) 

W*(t, q) = limW(t n + t, q), Q*(t, q, ¢]) = limQ(tn + t, q, q) 

G*(t ,q) = limG(t n+t,q), B*(t,q) = limB(t n+t,q) 

Here the corresponding convergence is uniform with respect to 

(t, q, q) ~ [0, T] x {q  : Ilqll -- H0 < H1 } x {¢1 : Ilqll -< H0 < Hi } 

The limit equations (1.4) define limit properties of the motions of system (1.1), and this enables us, 
according to theorems proved previously [1], to obtain the sufficient conditions for asymptotic stability 
and instability of the unperturbed motion using Lyapunov functions, which have a sign-constant 
derivative. 

For convenience we will denote the Hahn-type function by h [3], h : R + x R +, h(0) = 0 and h(a) is 
a strictly monotonically increasing continuous function; we will denote by 7 : R+ ---> R+ the uniformly 
continuous function, positive on average, i.e. such that for a certain T > 0 

t + T  

I T ( x )  d'c->7o >0,  VtE R + 
t 

Consider the region 

D = R+× {(q,e]): tlq-q01[ <& Ilqll <~} 

The following assertions regarding the stability of the equilibrium position (1.3) of system (1.1) hold. 

Assertion 1.1. We will assume that Eq. (1.2) holds and 
(1) the function W(t, q) - Wo(t), Wo(t) = W(t, q0) in the neighbourhood {q" I Iq  - qoll  < ~ > 0} o f  

the point q = q0 is positive-definite and allows of an infinitesimal higher limit with respect to q - q0 

hl(llq - %11) -< w(t, q) - Wo(t) <_ h2([[ q - %11) (1.5) 

(2) the acting forces and constraints are such that 

a 
~(-T2-TI+W-Wo)+(I 'Q<O,  V(t,q,¢])~ D 
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The equilibrium position (1.3) is then uniformly stable. 

Assertion 1.2. We will assume that Eq. (1.2) holds and 
(1) for all q ~ {q : ][ q - q0l[ < 5 > 0} conditions (1.5) are satisfied; 
(2) the acting forces and constraints are such that 

b 
~ ( -  r 2 - T~ + W -  Wo) + q'Q <_-7(t)h3(llqll) < o, v(t,  q, q) ~ D 

(3) the relative equilibrium position (1.3) is isolated: for any 11 > 0 we obtain ~ = e(q) > 0 such that 
when t _> to 

Q(t ,  q, 0 )  - OW(t,  q)  _ OB(t, q)  > e, V q  ~ { 0  < rl < Ilq- %11 < 6 }  
Oq Ot - 

E q u i l i b r i u m  position (1.3) is then uniformly asymptotically stable. 
Assertions 1.1 and 1.2 are derived from the theorem of stability in [3, 4] and from the theorem on 

asymptotic stability in [1] using the function V = T2 + W -  W0. 

Assertion 1.3. We will assume that equality (1.2) holds, there is no gyroscopic component of the inertial 
forces (G - 0), and also in the neighbourhood {q : I[q - q0[[ < 8 > 0} of the point q = q0 for all 
t _> to the following inequality holds 

3W(t, q) OB(t, q)) > 0 (1.6) 
(q  - qo)' Q(t ,  q, t]) - 3 q  Ot - 

The equilibrium position (1.3) of system (1.1) is unstable. 

Assertion 1.4. The conclusion regarding the instability of equilibrium position (1.3) remains true if, 
instead of condition (1.6), we assume that the forces Q are linear dissipative forces Q = -R~I, R = const, 
and also 

q ),(bW(t, q) bB(t, q)) < 0 
( q -  o t, ~ "  + ~t  - 

Assertions 1.3 and 1.4 are derived from the theorem of instability in [1] using respectively the Lyapunov 
functions 

OT2(t, q, (1) 
Vl( t ,q ,q)  = - ( q - q o ) '  b¢] 

bT2(t, q, (t) 1 , 
V2(t' q' q) = - -  (q - %)' ~¢1 :~(q - qo) R(q - q0) 

We will assume that the constraints and acting forces are such that the following representation holds 

Q = Ql +Q2 

bW 8B ) 0 S . ,  
Q i ( t ,  q )  - -~-(t, q ) -  -~-(t, q) = -p(t ,  q ~-~tq) (1.7) 

Q 2 : Q 2 ( t , q , q ) ,  Q2( t , q , 0 ) - 0  

wherep(t,  q) and S(q) are scalar functions, twice continuously differentiable with respect to t s R + and 
q 6 F 1, where 0 < Po <p(t, q) <Pl. 

Assertion 1.5. Suppose the forces can be represented in the form (1.7), and also 
(1) for a certain value of q = q0 

8S(q0) 
~----~ = 0,  S ( q )  - S (q0)  >- h I ([[q - %[[) 
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(2)  the corresponding relative equilibrium position (1.3) of system (1.1) is isolated, i .e.  

3qS ¢0,  q e  {o<llq-qoll< } 

(3) the following relation holds 

1 (Op ,vOp~T 1372 1 .,Q 
- - ' ; k . ~  +'~ --5"2-)'2--"~ - + - - q p - o t l p p  2 --- -T(t)h2(llqll) -< 0' ( t ,q ,q )~  D 

.(1.8) 

Then equilibrium position (1.3) is uniformly asymptotically stable. 
We will assume that the constraints imposed on the system and the acting forces are such that 

0 W  0B , O S ( q )  
Ql(t, q) - -~-(t, q) - ~-(t, q) = -P(t, q) ~q (1.9) 

where S(q) is the function introduced above, P(t, q) is an n x n matrix, twice continuousl~ differentiable, 
bounded, and non-degenerate, I det P] _ % = const > O, in which case the matrix F- (t, q)A(t, q) is 
positive-definite, and P-l(t, q)A(t, q) _> )'0E or (t, q) e R + x F1. 

Assertion 1.6. We will assume that (1.9) and conditions 1 and 2 of Assertion (1.5) are satisfied, and 
also that the following relations holds 

OT2~ 1 . , ~ - l d P ~ - i  . . 1 . , ~ - l d A  . 
(t'P -1 G ' q + Q z + - f f ~ j - ~ q r  -d~r a q - ~ q r  -d--~-q<-7(t)hz(llq]l)<0 (t,q, t l )e  D 

Equilibrium position (1.3) is then uniformly asymptotically stable. 
Assertions (1.5) and (1.6) were derived from the theorem of asymptotic stability in [1] using the 

following functions, respectively. 

T2(t, q, q)  
V3 - p(t, q) + S(q), 

. !  - - I .  
V 4 = ~qP ( t ,q)A(t ,q) f l+S(q)  

Example 1.1. Consider a physical pendulum [5], the horizontal swinging axis OO' of which rotates 
around the vertical axis ON in accordance with the transient relation co = to(t). Suppose the lines OO' 
and OG, where the point G is the centre of gravity of the body, are the principal axes of the ellipsoid 
of inertia of the body for the point O, z0 = lOG I. 

We will introduce a rectangular system of coordinates Oxyz, connected with the body, directing the 
x and z axes along OO' and OG respectively, while the y axis is orthogonal to the x and z axes. We will 
take 0 - the angle between the downward vertical and the z axis (Fig. 1) - as the generalized coordinate. 

Suppose A, B and C are the moments of inertia of the body about the x, y, z axes. 
We will find the components of the kinetic energy and the reduced potential energy 

1 .2  1 2  2 
= g A O  , T l = 0, W = -rngzocosO-gco (t)(Bsin O+ Ccos20) T 2 

The relative equilibrium positions are found from the equation 

OW 
- (coz(t)(C- B)cosO + mgzo)sinO = 0 

OO 

which, for any co(t), has the solutions 

O = 0, 0 = 0 (1.10) 

0 = n, b = 0 (1.11) 

From Assertion 1.1 we obtain the following conditions for uniform stability of the relative equilibrium 
positions 

+. mgzo + ( C -  B)co2(t) >- a o > O, ( C -  B)co(t)dl(t) <. 0 (1.12) 
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where the upper sign is taken for relative equilibrium position (1.10) and the lower sign for relative 
equilibrium position (1.11). 

We will assume that, in addition to gravity, viscous friction forces also act on the body. These produce 
a moment Me = -kO, k = const > 0. Then, by Assertion 1.2 we have that relative equilibrium positions 
(1.10) and (1.11) with conditions (1.12) are uniformly asymptotically stable. 

We will introduce the functions 

p(t ,  O) = +_mgz 0 + ( C - B ) o l 2 ( t ) c o s O ,  S(O) = 1 q: cosO 

(as above, the upper sign is taken for relative equilibrium position (1.10) and the lower sign for relative 
equilibrium condition position (1.11)). 

Using Assertion (1.5) we can obtain the following conditions for uniform asymptotic stability of the 
relative equilibrium positions 

A(  C -  B)o3( t)(.o( t) 
p(t ,  O) > ot o > O, k(t)  > k o - p(t ,  O) 

From Assertion 1.3 we can obtain that, when there are viscous friction forces and when there are no 
such forces, the conditions 

p(t,  O) < -~o  < 0 

will be the sufficient conditions for instability of relative equilibrium positions (1.10) and (1.11). 

2. STABILIZATION OF THE P R O G R A M M E D  M O T I O N  OF A 
M E C H A N I C A L  SYSTEM 

Suppose the position of a controlled holonomic mechanical system is defined by n generalized 
coordinates qt, q2, --., qn, and its motion due to the action of a set of controlling and external forces 
Q = Qy + Qb is described by Lagrange's equations of the second kind. 

Suppose (q°(t), dl°(t)) is the programmed motions of the system, which is produced by controlling 
forces Qy0 = Q0(t). We consider the problem of stabilizing this motion, which consists of determining 
the stabilizing forces Qc, Qy = Qy°(t) + Qc, which will ensure asymptotic stability of this programmed 
motion [6]. 

If we introduce new generalized coordinates x = q - q°(t), the problem reduces to the problem of 
determining the stabilizing forces Qc = Qc(t, x, i),  which, when there is simultaneous action of the 
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external forces Qb = Qb(t, x, i ) ,  ensures asymptotic stability of the zeroth equilibrium position i = 
x = 0 of the system with kinetic energy 

T = T2(t, x, x)  + Tl(t ,  x, x)  + To(t, x) 

Without loss of generality we can assume that the generalized coordinates q are chosen in such a 
way that the programmed motion of the system is the equilibrium position q - 0, q - 0, and 
correspondingly the motion of the system is described by equations similar to Eqs (1.1) 

d(OT2~ o3T2 _ oaro t~B_G0 ,+Qc+Qb (2.1) 
Zk ~-~'J 0q 0q /)t 

where G' = --G and Qc and Qb are the stabilizing (controlling) and external (natural) forces respectively. 
For the programmed motion q = q = 0 to exist, the acting forces must satisfy a relation similar to (1.2) 

OT° t, OB Qc(t, 0, 0) + Qb(t, 0, 0) + - - ~ - ( 0 )  - -~-(t, 0) -= 0 

The problem of stabilizing the programmed motion can be solved starting from assertions similar to 
Assertion 1.2, 1.5 and 1.6. 

We will assume that the forces Qc and Qb can be separated: 

Qc(t, q, ¢]) = Q~(t, q) + Q~(t, q, f]), Qb = Q~(t, q) + Qb(t , 2  q, q) 

Q~(t, q, O)= O, Q~(t, q, O) - 0 

while the components of the stabilizing forces Q1 c are chosen in such a way that the following relations 
are satisfied 

OB(t, q) OTo(t, q) 
Q~(t, q) + Q~(/, q) Ot + 0---"-~ 

,bS(q) - -p(t ,q) - ~  

where the functionsp(t, q) and S(q) satisfy condition (1.8) and assumptions (1) and (2) of Assertion (1.5) 
when q0 = 0, and the components of the stabilizing forces Q2c are chosen in such a way that for all 
(t, q, q) e D 

1 (Op "'OP')T 10T2 1 . . . .  2 ~ 2 .  
- ~ t ~  + q ~@ 2 - p - ~ -  + pq t~c  + ~b) < -T(t)hE(llqll) (2.2) 

Then, by Assertion 1.5, the stabilizing force Qc ensure uniform asymptotic stability of the programmed 
motion ~i = q = 0. 

Remark 1. If the stabilizing forces Qc = Qlc + Q2 are defined in such a way that conditions (1.7), (1.8) and (2.2) 
are satisfied for all (t, q,/1) ~ R + × F1 × F2, where S(q) ~ +oo as q ~ OF1, the force Qc will ensure uniform asymptotic 
stability of the equilibrium position Cl = q = 0 as a whole, i.e. with respect to any initial perturbations (to, q0,/1) 
R+ XFlXF2 . 

Remark 2. The problem of stabilizing programmed motion was also considered earlier, for example, it was solved 
for controlling forces of the form [7, 8] 

1 ,. OTo 
Qy = B + ~ a ( i - ~ - f f - Q b - a l q - B l q  

1 ,- 0T0 Qy = B + =)-4(! - ~-~ - Qb - Alq - Blq - gF(q + f C i A q )  

where f and g are non-negative numbers, A1, B1 and C, are constant symmetrical n × n matrices, which satisfy 
estimates with positive constants ai, b i and ci (i = 1, 2) respectively: 

ajEn<Al <azEn, blEn<-Bl <b2En, ClEn<CI <C2En 
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and F is a constant matrix, which satisfies the estimate 

d 1E n < (F + F')/2 (d 1 > O) 

With the representation, these forces depend very much on the parameters of the mechanical system and do 
not take into account the action of the external forces, which may turn out to have a stabilizing effect. 

Example  2.1. For a physical pendulum (see Example 1.1 in the case of viscous friction forces) we 
will consider the problem of stabilizing a certain programmed unsteady motion of the pendulum 
O = O0(t), which is produced by a regulated velocity of rotation co(t) around the vertical axis ON. 
Suppose the rotation is given by co = co(t) such that the pendulum moves in an unsteady manner: 
0 = Oo(t), i.e. 

co2(t)(C - B)cosflo(t)sinOo(t) = A;Oo(t) + mgzo - kOo(t) 

If we introduce x = 0 - O0(t) - the deviation of the actual motion from the programmed motion, the 
equations of perturbed motion can be written in the form 

~S . 
J( = - p (  t, x)-~x - kox 

= 1 t x B)coz(t)cos2(Oo(t)  + x x x, 

( x) k 
S(x)  = 4 1 - c o s ~  , k o = 

When the conditions 

p(t ,  O) = mgzocOSOo(t) + ( C -  B)co2(t)cos2Oo(t) >_ Po > 0 

d ( l n p ( t , O ) ) > - 2 k o + ° ~ o ,  ~o = const>0 

are satisfied, the specified motion of the pendulum 0 = O0(t) is asymptotically stable. These conditions 
can be represented as the condition for the second variation of the reduced potential energy W to be 
positive definite in the motion 0 = O0(t), and the condition for the logarithmic change of this variation 
with time to have a lower limit of-2k0. 

Example  2.2. We will consider the problem of the stability of programmed unsteady motions of a 
centrifuge (Fig. 2). 

The cage of the centrifuge is a rigid body which can rotate freely around an axis OO' about the holder 
COO' .  The axis OO' is orthogonal to the plane L, passing through the axis CC'  of the centrifuge and 
the centre of mass G of the cage. The holder C O O '  is set in rotation around a fixed axis CC',  and the 
rotation velocity varies as co = c0(t). We take as the generalized coordinate the angle of rotation ct of 
the cage around the axis OO'. 

O ~ 

& 

C 

C' 

c . . . 3  co 

1 
c 

c' 

Fig. 2 

m 
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Suppose L is the plane of symmetry of the cage, while the x axis, passing through the point G in this 
plane and intersecting the axis OO' at the point O, is the principal axis of the central ellipsoid of inertia. 
We will denote byA, B and C the moments of inertia of the cage about the x, y, z axes, the distance OC 
by 1, and the distance OG by r [5]. 

Correspondingly we obtain 

T = ~C~t + to2(t)(Asin2a + Bcos2~ + 2mlrcosct  + ml 2) 

11 = m g r s i n a  

We will assume that forces of viscous friction act in the hinged supports OO', producing a moment 

M = - k ~ t ,  k = const>0 (2.3) 

Suppose the regulated rotation of the holder COO'  around the axis CC' as given by co = o)(t) is such 
that the cage moves in an unsteady manner: a = a0(t), i.e. 

¢02(t)((A - B)cosao( t  ) - mlr )s inao( t  ) = C~o(t  ) + k~to(t) + mgrcosao( t )  

From Assertion 1.5 we can obtain that for all conditions 

p( t )  = - mgrs inao( t )  + to2(t)(mlrcosao(t)  - (A - B)cos2ao( t ) )  > Po > 0 

d( lnp( t ) )  > -  2k o + [~o 

the motion a = ~o(t) will be uniformly asymptotically stable. Whenp(t) <_ -Po < 0 it will be unstable. 

Example 2.3. Consider the problem of Example 2.2 assuming that the axis OO' is parallel to the axis 
CC' of the centrifuge. As before, we will take as the generalized coordinate the angle of rotation a of 
the cage around the axis OO'. We will denote the moment of inertia of the cage about the axis OO' 
by I [5]. 

We will assume that forces of viscous friction act in the hinged supports OO', producing a moment 
(2.3). We will write the equations of motion in the form 

I~  = - to2( t )mlrs ina + u (2mlr to ( t ) cosa  + I) - k6t, u = (o(t) 

Suppose the regulated rotation of the holder C O 0 '  around the axis CC' co = 6o(0 due to the action of 
the controlling moment u is such that the cage moves in an unsteady manner: t~ = s0(t). 

The equation of perturbed motion can be reduced to the form 

OS 
= - p ( t ,  x ) - ~ x ,  ko~, x = a -  So(t)  

p(t ,  x ) =  )mlrto(t)(to(t)cos(O~o(t) + 2 ) - ~ ( / ) s i n ( a ° ( t )  + 2)) 

S ( x ) =  4 ( 1 - c o s 2 ) ,  ko = k 

From Assertion 1.5, when the following condition is satisfied 

p(t,  O) = t~(t)( to(t)cosao(t)  - u ( t ) s inao( t ) )  > P0 = const > 0 

d( lnp( t ,  0)) - 2k 0 + 130 > 

we will have uniform asymptotic stability of the specified unsteady motion a = s0(t). 
With the opposite conditionp(t, 0) ___ -P0 < 0, according to Assertion 1.4, the motion ct = ao(t) will 

be unstable. 
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